On the convergence of trust region algorithms for unconstrained minimization without derivatives

نویسنده

  • M. J. D. Powell
چکیده

We consider iterative trust region algorithms for the unconstrained minimization of an objective function F (x), x∈R, when F is differentiable but no derivatives are available, and when each model of F is a linear or a quadratic polynomial. The models interpolate F at n+1 points, which defines them uniquely when they are linear polynomials. In the quadratic case, second derivatives of the models are derived from information from previous iterations, but there are so few data that typically only the magnitudes of second derivative estimates are correct. Nevertheless, numerical results show that much faster convergence is achieved when quadratic models are employed instead of linear ones. Just one new value of F is calculated on each iteration. Changes to the variables are either trust region steps or are designed to maintain suitable volumes and diameters of the convex hulls of the interpolation points. It is proved that, if F is bounded below, if ∇F is also bounded, and if the number of iterations is infinite, then the sequence of gradients ∇F (xk), k = 1, 2, 3, . . ., converges to zero, where xk is the centre of the trust region of the k-th iteration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving the Unconstrained Optimization Problems Using the Combination of Nonmonotone Trust Region Algorithm and Filter Technique

In this paper, we propose a new nonmonotone adaptive trust region method for solving unconstrained optimization problems that is equipped with the filter technique. In the proposed method, the various nonmonotone technique is used. Using this technique, the algorithm can advantage from nonmonotone properties and it can increase the rate of solving the problems. Also, the filter that is used in...

متن کامل

روش به روز رسانی متقارن از مرتبه اول برای حل مسایل بهینه سازی مقیاس بزرگ

The search for finding the local minimization in unconstrained optimization problems and a fixed point of the gradient system of ordinary differential equations are two close problems. Limited-memory algorithms are widely used to solve large-scale problems, while Rang Kuta's methods are also used to solve numerical differential equations. In this paper, using the concept of sub-space method and...

متن کامل

A limited memory adaptive trust-region approach for large-scale unconstrained optimization

This study concerns with a trust-region-based method for solving unconstrained optimization problems. The approach takes the advantages of the compact limited memory BFGS updating formula together with an appropriate adaptive radius strategy. In our approach, the adaptive technique leads us to decrease the number of subproblems solving, while utilizing the structure of limited memory quasi-Newt...

متن کامل

A Trust-region Method using Extended Nonmonotone Technique for Unconstrained Optimization

In this paper, we present a nonmonotone trust-region algorithm for unconstrained optimization. We first introduce a variant of the nonmonotone strategy proposed by Ahookhosh and Amini cite{AhA 01} and incorporate it into the trust-region framework to construct a more efficient approach. Our new nonmonotone strategy combines the current function value with the maximum function values in some pri...

متن کامل

On Trust Region Methods for Unconstrained Minimization without Derivatives 1

We consider some algorithms for unconstrained minimization without derivatives that form linear or quadratic models by interpolation to values of the objective function. Then a new vector of variables is calculated by minimizing the current model within a trust region. Techniques are described for adjusting the trust region radius, and for choosing positions of the interpolation points that mai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comp. Opt. and Appl.

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2012